



**DIVISION OF HIGHWAY DESIGN** 



# SECTION 1 – PROJECT DRAINAGE SUMMARY

Summary Sheet of Designed Structures (w/flow changes at outfalls)

Project Drainage Discussion

Site Conditions

**Design Assumptions** 

Analysis Methods

Programs Used

Deviations from Drainage Manual Guidance

Watershed maps: Pipes, Storm Sewers, & Ditches with Longest Flow Path, C Value Calculations and Existing Areas (if different)

Email Correspondence & Drainage Inspection Minutes

Pertinent Hydrology - NOAA Intensities Table

| DRAINAGE STRUCTURE SUMMARY |               |                          |           |                       |                |  |  |
|----------------------------|---------------|--------------------------|-----------|-----------------------|----------------|--|--|
| Line                       | Station       | Length                   | Analysis* | Q100 at Outfall (cfs) |                |  |  |
| MAIN                       | 9+00          | 118 lf - 18" Storm Sewer |           | Existing<br>28        | Proposed<br>30 |  |  |
| WAIN                       | 9+00<br>14+79 | 77 lf - 30" Pipe         |           | 26.5                  | 30             |  |  |
| "                          | 22+79         | 64 lf - 24" RCP          |           | 20.5                  | 25             |  |  |
| "                          | 28+68         | 82 lf - 12'x4' RCBC      |           | 110                   | 125            |  |  |
| "                          | 33+68         | 64 lf - 30" Pipe         |           | 27                    | 33             |  |  |
| "                          | 48+00         | 28 lf - 12'x6' Dbl RCBC  |           | 115                   | 130            |  |  |
| "                          | 56+83         | 104 lf - RCBC            |           | 90                    | 95             |  |  |
| "                          | 79+77         | 146 lf - 8'x5' RCBC      |           | 209                   | 212            |  |  |
| "                          | 82+80         | 85 lf - 30" Pipe         |           | 24                    | 25             |  |  |
| "                          | 87+62         | 120 lf - 48" Pipe        |           | 100                   | 115            |  |  |
| "                          | 121+83        | 94 lf - 7'x4' RCBC       |           | 202                   | 207            |  |  |
| "                          | 200+00        | 150 lf, Bridge           | Advanced  | 2500                  | no change      |  |  |
| Clinton                    | 27+87         | 52 lf - 18" RCP          |           | 15                    | 21             |  |  |
| "                          | 58+24         | 8 lf - 18 " Pipe Ext.    |           | 19                    | no change      |  |  |
|                            |               |                          |           |                       |                |  |  |
|                            |               |                          |           |                       |                |  |  |
|                            |               |                          |           |                       |                |  |  |

\* - Advanced denotes 1 or 2 dimensional hydraulic modeling, scour analysis or other complicated or involved analysis technique. Blank denotes typical analysis.

| DRAINAGE SOFTWARE SUMMARY |                   |             |      |                           |  |  |  |
|---------------------------|-------------------|-------------|------|---------------------------|--|--|--|
| Provider                  | Identification    | Version     | Used | Comment                   |  |  |  |
|                           | HY8               | 7.50        | Y    |                           |  |  |  |
| FHWA                      | Hydraulic Toolbox | 4.30        |      | Roadway Ditch Design      |  |  |  |
|                           | Hydraulic Toolbox | 4.30        | Y    | Rational Flows            |  |  |  |
|                           |                   |             |      |                           |  |  |  |
| U.S. Army                 | HECRAS            | 4.1.0       | Y    |                           |  |  |  |
| Corps                     | HECRAS            | 5.0.6       |      |                           |  |  |  |
| Engineers                 | HEC-HMS           | 4.2.1       |      |                           |  |  |  |
| -                         |                   |             |      |                           |  |  |  |
| Bentley                   | Stormcad          | 10.01.01.04 |      |                           |  |  |  |
| -                         |                   |             |      |                           |  |  |  |
|                           | Spreadsheet       | 02.17       | Y    | Regional Flows            |  |  |  |
| КҮТС                      | Spreadsheet       | 17          | Y    | Rational Flows            |  |  |  |
| KTIC                      | Spreadsheet       | 12a-13      |      | Inlet Spread Calculations |  |  |  |
|                           | Spreadsheet       | 01-16       |      | Storm Sewer Capacity      |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
| A                         | SMS / SRH-2D      | 13.0.3      |      |                           |  |  |  |
| Aquaveo                   | WMS               | 11.0.1      |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
| HydroCAD                  | HydroCAD          | 10.00-24    | Y    | Storage Analysis          |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |
|                           |                   |             |      |                           |  |  |  |

# **SECTION 2 – CULVERTS AND BRIDGES**

#### **Standard Analysis**

Pipe Sheets or Situation Survey Sheets with:

Hydraulic Data Table containing Design & Check Q, HW, Outlet Velocities, Basis for Allowable HW, & Drainage Area

**Outfall Channel Geometry** 

Hydraulic Design Output Report

#### Advanced Analysis

Structure Plan or Layout Sheet

Hydraulic Design Output

Maps (FIRM, Contour, Aerial, Drainage Area, Land Use, etc. as needed)

Risk Assessment Form (if applicable)

**Output Results** 

Site Specific Hydrologic & Hydraulic Discussion

**FEMA Restrictions & Conclusions** 

**Environmental Commitments or Limitations** 

## **SECTION 3 – STORM SEWER SYSTEMS**

Output of Results Plot of EGL/HGL Profile (if needed) **SECTION 4 – PAVEMENT INLET CALCULATIONS** 

Hydraulic Design Output

# **SECTION 5 – ROADSIDE DITCH CALCULATIONS**

Hydraulic Design Output